武威西门子代理商
●采用高的脉冲频率,保证电机的低噪声运行
●紧凑,节省安装空间的设计
●通过参数即可完成 50 Hz 或 60 Hz 电机 (IEC 或 NEMA 电机) 的设置
●可进行数字量输入的 2/3 线选择(电平/脉冲信号)完成常用的控制方式的设置
●可以通过通用工具 SIZER,STARTER 和 Drive ES 进行工程设置和调试,保证了组态的简单和调试的方便—由于Drive ES BasicSTARTER 集成在 STEP 7中,这就保证了数据的集中保存和通信的连续性
●符合世界范围的认证: CE,UL,cUL,c-tick 以及集成的安全保护标准 IEC 61508 SSINAMICSG130变频器是一种变频装置,可以非常灵活地与相关选件组合,集成到客户机柜中或直接集成到机器设备内。通过丰富的电气选件实现传动系统的优化,从而满足客户的特定要求。配置和调试工作也因预定义的接口和参数而被大大简化。
特点:
? 采用了半导体技术的 IGBT 和革新的冷却方式,结构非常紧凑,运行异常安静。
?因所有可更换部件的设计均基于方便接近、快速更换的原则,模块和功率器件可实现快速轻松地更换,从而提高了装置的使用效率。通过“SparesOnWeb”工具,可方便地查看所订购传动的可用备件。西门子变频器G130
? 一个标准的 PROFIBUS 通讯接口以及各种模拟量和数字量接口,可方便地集成到自动化系统中。
? 图形化 LCD 的 AOP30 操作面板或装有 STARTER 调试工具的 PC可以轻松地进行调试和参数设定。
? 丰富的软件功能使之能胜任客户的各种要求。
?所有部件,从单独的零件到完整的变频装置,整个生产过程中均经严格的测试。这就保证了它们在安装、调试和运行过程中具有*的可靠性
概述
CM IO-Link 通信模块
串行通信模块,用于根据 IO Link 规范 V1.0 和 V1.1 连接多 4 个 IO-Link 设备。使用 PortConfiguration Tool (PCT) V3.0 或更高版本组态 IO-Link 参数。支持的数据传输速率
COM1 (4.8 kbps)
COM2 (38.4 kbps)
COM3 (230.4 kbps)
扩展限制
电缆长度:大 20 m
每个端口多 32 字节输入和输出数据
每个模块多 32 字节输入和输出数据
支持的 ET 200SP 系统功能
无需编程设备即可更换设备;通过将参数冗余保存到电子编码元件,无需编程工具即可自动备份 IO Link 设备参数( V1.1设备)和 IO-Link 主站参数
运行期间可重新设定参数
识别数据 I&M
固件更新
PROFIenergy
采用自动电子编码,可以插入到 A0 型基座单元 (BU)
LED 指示灯
DIAG:模块运行状态指示灯(绿色/红色)
C1..C4:端口 1、2、3 和 4 的端口状态指示灯(绿色)
Q1..Q4:端口 1、2、3 和 4 的通道状态指示灯(绿色)
F1..F4:端口 1、2、3 和 4 的端口故障指示灯(红色)
PWR:电源电压指示灯(绿色)
模块正面的清晰标签
模块类型和功能等级的纯文本标识
二维矩阵码(订货号和序列号)
接线图
通信模块类型的颜色编码:银色
硬件和固件型号
完整订货号
可选附件
标签条
参考识别标签
颜色代码为 CC04 的彩色编码板
可选系统集成屏蔽连接
西门子plc程序的调试可以分为模拟调试和现场调试两个调试过程,对PLC外部接线作仔细检查很重要。外部接线没有问题。为了安全考虑,好将主电路断开。用先编写好的试验程序对外部接线做扫描通电检查来查找接线故障。当确认接线无误后再连接主电路,将模拟调试好的程序送入用户存储器进行调试,直到各部分的功能都正常,并能协调一致地完成整体的控制功能为止。 1.程序的模拟调试 如果程序中某些定时器或计数器的设定值过大,为了缩短调试时间,可以在调试时将它们减小,模拟调试结束后再写入它们的实际设定值。在设计和模拟调试程序的可以设计、制作控制台或控制柜,PLC之外的其他硬件的安装、接线工作也可以进行。 将设计好的程序写入PLC后,逐条仔细检查,并改正写入时出现的错误。用户程序一般先在实验室模拟调试,实际的输入信号可以用钮子开关和按钮来模拟,各输出量的通/断状态用PLC上有关的发光二极管来显示,一般不用接PLC实际的负载(如接触器、电磁阀等)。可以根据功能表图,在适当的时候用开关或按钮来模拟实际的反馈信号,如限位开关触点的接通和断开。对于顺序控制程序,调试程序的主要任务是检查程序的运行是否符合功能表图的规定,即在某一转换条件实现时,是否发生步的活动状态的正确变化,即该转换所有的前级步是否变为不活动步,所有的后续步是否变为活动步,以及各步被驱动的负载是否发生相应的变化。 在调试时应充分考虑各种可能的情况,对系统各种不同的工作方式、有选择序列的功能表图中的每一条支路、各种可能的进展路线,都应逐一检查,不能遗漏。发现问题后应及时修改梯形图和PLC中的程序,直到在各种可能的情况下输入量与输出量之间的关系完全符合要求。 2.程序的现场调试 完成上述的工作后,将PLC安装在控制现场进行联机总调试,在调试过程中将暴露出系统中可能存在的传感器、执行器和硬接线等方面的问题,以及PLC的外部接线图和梯形图程序设计中的问题,应对出现的问题及时加以解决。如果调试达不到指标要求,则对相应硬件和软件部分作适当调整,通常只需要修改程序就可能达到调整的目的。全部调试通过后,经过一段时间的考验,系统就可以投入实际的运行了 |
plc是一种专门为在工业环境下应用而设计的数字运算操作的电子装置。它采用可以编制程序的存储器,用来在其内部存储执行逻辑运算、顺序运算、计时、计数和算术运算等操作的指令,并能通过数字式或模拟式的输入和输出,控制各种类型的机械或生产过程。PLC及其有关的外围设备都应该按易于与工业控制系统形成一个整体,易于扩展其功能的原则而设计。 一.PLC的由来 可编程控制器(ProgrammableController)是计算机家族中的一员,是为工业控制应用而设计制造的。早期的可编程控制器称作可编程逻辑控制器(ProgrammableLogic Controller),简称PLC,它主要用来代替继电器实现逻辑控制。随着技术的发展,这种装置的功能已经大大超过了逻辑控制的范围,这种装置称作可编程控制器,简称PC。为了避免与个人计算机(PersonalComputer)的简称混淆,将可编程控制器简称PLC。 在60年代,汽车生产流水线的自动控制系统基本上都是由继电器控制装置构成的。当时汽车的每一次改型都直接导致继电器控制装置的重新设计和安装。随着生产的发展,汽车型号更新的周期愈来愈短,这样,继电器控制装置就需要经常地重新设计和安装,十分费时,费工,费料,甚至阻碍了更新周期的缩短。为了改变这一现状,美国通用汽车公司在1969年公开招标,要求用新的控制装置取代继电器控制装置,并提出了十项招标指标,即: 1、编程方便,现场可修改程序; 2、维修方便,采用模块化结构; 3、可靠性高于继电器控制装置; 4、体积小于继电器控制装置; 5、数据可直接送入管理计算机; 6、成本可与继电器控制装置竞争; 7、输入可以是交流115V; 8、输出为交流115V,2A以上,能直接驱动电磁阀,接触器等; 9、在扩展时,原系统只要很小变更; 10、用户程序存储器容量至少能扩展到4K。 1969年,美国数字设备公司(DEC)研制出台PLC,在美国通用汽车自动装配线上试用,获得了成功。这种新型的工业控制装置以其简单易懂,操作方便,可靠性高,通用灵活,体积小,使用寿命长等一系列优点,很快地在美国其他工业领域推广应用。到1971年,已经成功地应用于食品,饮料,冶金,造纸等工业。 这一新型工业控制装置的出现,也受到了世界其他国家的高度重视。1971日本从美国引进了这项新技术,很快研制出了日本台PLC。1973年,西欧国家也研制出它们的台PLC。我国从1974年开始研制。于1977年开始工业应用。 二. PLC的定义 PLC问世以来,时间不长,但发展迅速。为了使其生产和发展标准化,美国电气制造商协会NEMA(NationalElectrical ManufactoryAssociation)经过四年的调查工作,于1984年将其正式命名为PC(ProgrammableController),并给PC作了如下定义: “PC是一个数字式的电子装置,它使用了可编程序的记忆体储存指令。用来执行诸如逻辑,顺序,计时,计数与演算等功能,并通过数字或类似的输入/输出模块,以控制各种机械或工作程序。一部数字电子计算机若是从事执行PC之功能者,亦被视为PC,但不包括鼓式或类似的机械式顺序控制器。” 以后国际电工委员会(IEC)又先后颁布了PLC标准的草案稿,第二稿,并在1987年2月通过了对它的定义: “可编程控制器是一种数字运算操作的电子系统,专为在工业环境应用而设计的。它采用一类可编程的存储器,用于其内部存储程序,执行逻辑运算,顺序控制,定时,计数与算术操作等面向用户的指令,并通过数字或模拟式输入/输出控制各种类型的机械或生产过程。可编程控制器及其有关外部设备,都按易于与工业控制系统联成一个整体,易于扩充其功能的原则设计。” 可编程控制器是一台计算机,它是专为工业环境应用而设计制造的计算机。它具有丰富的输入/输出接口,并且具有较强的驱动能力。但可编程控制器产品并不针对某一具体工业应用,在实际应用时,其硬件需根据实际需要进行选用配置,其软件需根据控制要求进行设计编制。 三、PLC的发展阶段 PLC问世时间不长,随着微处理器的出现,大规模,超大规模集成电路技术的迅速发展和数据通讯技术的不断进步,PLC也迅速发展,其发展过程大致可分三个阶段: 1、早期的PLC(60年代末—70年代中期) 早期的PLC一般称为可编程逻辑控制器。这时的PLC多少有点继电器控制装置的替代物的含义,其主要功能只是执行原先由继电器完成的顺序控制,定时等。它在硬件上以准计算机的形式出现,在I/O接口电路上作了改进以适应工业控制现场的要求。装置中的器件主要采用分立元件和中小规模集成电路,存储器采用磁芯存储器。还采取了一些措施,以提高其抗干扰的能力。在软件编程上,采用广大电气工程技术人员所熟悉的继电器控制线路的方式—梯形图。早期的PLC的性能要优于继电器控制装置,其优点包括简单易懂,便于安装,体积小,能耗低,有故障指使,能重复使用等。其中PLC特有的编程语言—梯形图一直沿用至今。 2、中期的PLC(70年代中期—80年代中,后期) 在70年代,微处理器的出现使PLC发生了巨大的变化。美国,日本,德国等一些厂家先后开始采用微处理器作为PLC的中央处理单元(CPU)。 这样,使PLC的功能大大增强。在软件方面,除了保持其原有的逻辑运算、计时、计数等功能以外,还增加了算术运算、数据处理和传送、通讯、自诊断等功能。在硬件方面,除了保持其原有的开关模块以外,还增加了模拟量模块、远程I/O模块、各种特殊功能模块。并扩大了存储器的容量,使各种逻辑线圈的数量增加,还提供了一定数量的数据寄存器,使PLC得应用范围得以扩大。 3、近期的PLC(80年代中、后期至今) 进入80年代中、后期,由于超大规模集成电路技术的迅速发展,微处理器的市场价格大幅度下跌,使得各种类型的PLC所采用的微处理器的档次普遍提高。为了提高PLC的处理速度,各制造厂商还纷纷研制开发了专用逻辑处理芯片。这样使得PLC软、硬件功能发生了巨大变化。 四、PLC应用中需要注意的问题 PLC是一种用于工业生产自动化控制的设备,一般不需要采取什么措施,就可以直接在工业环境中使用。有如上所述的可靠性较高,抗干扰能力较强,但当生产环境过于恶劣,电磁干扰特别强烈,或安装使用不当,就可能造成程序错误或运算错误,从而产生误输入并引起误输出,这将会造成设备的失控和误动作,从而不能保证PLC的正常运行,要提高PLC控制系统可靠性,一方面要求PLC生产厂家提高设备的抗干扰能力;另一方面,要求设计、安装和使用维护中引起高度重视,多方配合才能完善解决问题,有效地增强系统的抗干扰性能。在使用中应注意以下问题: 1.工作环境 (1)温度 PLC要求环境温度在0~55oC,安装时不能放在发热量大的元件下面,四周通风散热的空间应足够大。 (2)湿度 为了保证PLC的绝缘性能,空气的相对湿度应小于85%(无凝露)。 (3)震动 应使PLC远离强烈的震动源,防止振动频率为10~55Hz的频繁或连续振动。当使用环境不可避免震动时,必须采取减震措施,如采用减震胶等。 (4)空气 避免有腐蚀和易燃的气体,例如氯化氢、硫化氢等。对于空气中有较多粉尘或腐蚀性气体的环境,可将PLC安装在封闭性较好的控制室或控制柜中。 (5)电源 PLC对于电源线带来的干扰具有一定的抵制能力。在可靠性要求很高或电源干扰特别严重的环境中,可以安装一台带屏蔽层的隔离变压器,以减少设备与地之间的干扰。一般PLC都有直流24V输出提供给输入端,当输入端使用外接直流电源时,应选用直流稳压电源。因为普通的整流滤波电源,由于纹波的影响,容易使PLC接收到错误信息 |